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Estimating the Lyapunov spectrum of time delay feedback systems from scalar time series
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On the basis of a recently developed method for modeling time delay systems, we propose a procedure to
estimate the spectrum of Lyapunov exponents from a scalar time series. It turns out that the spectrum is
approximated very well and allows for good estimates of the Lyapunov dimension even if the sampling rate of
the time series is so low that the infinite dimensional tangent space is spanned quite sparsely.
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Nonlinear time series analysis became a common ap- SN F le - od
proach to the investigation of dynamical systems. On the one YO=Ty®).y(t=m)), yeR. @

hand, this is due to the fact that the study of deterministiqyye to the feedback of thh coordinate the phase space of
chaotic behavior became quite popular; on the other handhe system is the direct product Bf with the space of the
the number and the reliability of available methods to ex-differentiable functions of the intervéi 7,,0[ .

plore this kind of systems did increase similarly rapitige, Although the phase space is infinite dimensional, the sys-
e.g., [1,2] and references therginCollecting time series tem has a particular property if one uses the variables
{Xnhn=1 consisting of measurements of a single physical obyy(t),y(t),y' (t— 70)]. In this space Eqg1) define a set of
servable of the system, there are, at least for low-dimensiongpnstraints  that restrict the system to lie on a
systems, methods that allow for good estimates of the fractqkﬂ_ 1)-dimensional manifold M, which can be even

dimensions(usually the correlation dimensidi3]) and the  smaller in dimension than the attractor. This property was
maximal Lyapunov exponen#,5]. The reason why it is of- ysed in[10,11] to determine the delay tims, and the vector
ten sufficient to measure a scalar time series only is becausild f for the cased=1.
of the theorems of Takeri$] and Saueet al. [7]. Takens More general is the casé>1. Let {x,}h_, be a time
showed that, loosely speaking, one can reconstruct the unoBeries of lengtiN and letx,, be either the component of the
served variables by building so-called delay vecters System, which was fed back or an invertible function of it.
=(Xi, ... Xi_ms+1). If the dimensionm of the delay vec- Further, letr, be a integer multiple of the time intervalst
tors fulfils m>2d, whered is the phase-space dimension of Of the measurement, =poAt. It is necessary to reconstruct
the system, then the space of the delay vectors is diffeomothe unmeasured variables p(t). Recently we proposed a
phic to the original phase space. Saaeal. generalized this method[12] to reconstruct these variables on the above-
theorem in the sense that they showed thamif2D;, defined manifoldM. Since the system is nonautonomdums
where D¢ is the fractal dimension of the attractor, the newthe sense that it is nonlocal in tipeve borrowed ideas of
space is an immersion of the original attractor. Since théCasdagli for input-output systerfis3]. In this work Casdagli
dimension and the Lyapunov exponents are invariant unddreated systems of the form
diffeomorphisms, one can calculate these quantities in the . .
delay space as well. Xn+1= F(Xn, €n), ()

The restriction to low-dimensional systems is not due to ) ) )
theoretical, but to practical reasons. It was shown that th&heree, is an arbitrary input. For such a system the Takens
number of points needed for the analysis grows exponerfmbedding cannot work if one only measures one variable.
tially with the attractor dimensiof8]. This makes it difficult 1 NiS is due to the fact that each measurement gives rise to a
or even impossible to handle high-dimensional objects. But #8W €n and thus, a new source of “uncertainty.” He argued
lot of interesting systems are rather high dimensional or eveff@t if, in addition to one variable, one also measures the
infinite dimensional. One example is spatially extended sysiPUts, a reconstruction in the sense of Takens’s works again,
tems given by partial differential equations. Their phasePut now with the tuplesx;,,€,). In our case the input is the
space is indeed infinite dimensional and thus the attractordelayed variablex,_, 1. So, in the spirit of Casdagli we
can be arbitrarily high in dimension. Another class of sys-build vectors(without loss of generality we sett=1 and
tems, and these are the ones we discuss in this paper, is thieus o= p, for the rest of this paper
so-called time delay feedback systef8% In these systems
one or more of the coordinates are fed back to the system,(7o)=(Y,,Yn_1, - . . Yn-m+1:Yn-rg «+ Yn-rg-m+1)
with some time delay. In principle, one could imagine rather (3)
complicated mechanisms of the feedback, but we want to
restrict ourselves to the case in which we have only onavheremis the embedding dimension. In the sense of Takens
component fed back with one fixed delay tinrg. In this  this m has generically to be at leasti2o give a diffeomor-
case the equations of motion read phic representation of the manifolti.
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In the embedding space the dynamics of the system, or ir 0.01
other wordsM, is given through 0
Xn+1=9(Vn(70)). @ 001

-0.02
In principle the dynamics should also be given as a differen-

tial equation as in the original space. But due to the finitenes«< ~ -0.03
of At and the resulting maplike structure of the time series, 0.04
we treat it as a map. This, of course, could cause problems it
the reconstruction. SincAt is finite, we are only able to -0.05
span a space of dimensieg and we lose all the dimensions -0.06
from smaller time scales. The only way to decide whether
there was information lost, except when one has information
about the typical time scales of the system, is to compare the
results for differentAt and to see if the results converge. We
will come back to this point later on. FIG. 1. Estimate of the first 92 Lyapunov exponents for
Usually we know neither the functiog nor the correct Mackey-Glass withro=46. The symbols show the result for the
delay timer,. So we have to make an ansatz to estimatdteration ofJ"; the soIic_:I Iine_the result for t_he ite_ratipn of the exact
both. Letag be an ansatfe.g., polynomials, radial basis tangent space dynamics with the same discretization of the tangent

-0.07 L 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90

functions, or local linear modelsf the functiong depending space.

linearly on a set of paramete§s Using a likelihood estima- ay(t— o)

tor for the optimal parameteéwe can gefy. And since the y = y—olo_ by(t). (8)
constraint(4) can only be fulfilled if we use the correct delay 1+y(t—17p)

time, we can use the fit of the function also as a scheme to

determiner, (for more details, sefl12]). The parameters we chose ae 0.2, b=0.1, andry,=46.

Since we are interested in calculating Lyapunov eXpO_Since this is a single component system, we do not need an

nents and thus in the dynamics in tangent space, we choo§&10edding technique at all and we can work in the “physi-
as an ansatz fd; a local linear model cal” space. We used a time series of length 50 000 sampled
a

with a At of 1/2. This means we can estimate 92 exponents
of the system. Figure 1 shows the estimate of these 92
Lyapunov exponents. The second curve, marked as exact, are
- .. . the exponents obtained by iterating the exact tangent space
where the parameter, anda depend on the position in dynamics and using the scheme of Farfiié&s]. The discreti-

space explicitly. Once we estimated the dynamics in the ' ation of the tangent space was the same with this scheme.

constructed space, we can introduce the dyn:’:lmics in its talyne sees from the figure that the exponents agree nearly
gent space. Therefore, we introduce the vectgrhrough perfectly with the exact ones.

. This is confirmed by Fig. 2 where we show the conver-
Z,= (X Xp—1, - - - ’anroferl)- (6) gence of the Kaplan-YorkEL6] dimension as a function of
the number of iterations. Note that the fit for the dynamics is

The meaning of the vectog, is twofold. They both contain done in a two-dimensional space, while the Kaplan-Yorke
the delay reconstruction of the unobserved variable and thegimension is about 5. This means, using usual delay embed-
span the whole intervdl— 7,:0], which means the tangent ding we needed at least an embedding dimension of 6. In
space of the system. Of course, this is not the full tangensuch a high-dimensional embedding space fitting a dynamics
space that was infinite dimensional, but a discretized version

Xn+1:a0,n+anvn(7)l 5

of it. Thus, with a sampling timét we can estimate,/At 5.1 e
Lyapunov exponents. 5[
For Zn the Jacobians are simply given by
49
- an+1 . —_ L
n_(aZnJrl) | gz =1 . S 4.8
n=| 22| =| dg " %
9z, | a 47t

ij Sijr1, 1>1.
46t
The first row of the Jacobian contains the fitted coefficients
a; at the positions of\zn)j and zeros elsewhere. The other
rows define a shift operation. To obtain the exponents we 4.4 . . . . . : .
iterate a set of vectoréi in tangent space according to the 10000 20000 30000 40000 50000
dynamics given by th@". n
To demonstrate the strength of the method we present its FIG. 2. Estimate of the Kaplan-Yorke dimension for the
application to numerical models. The first one is theMackey-Glass system as a function of the number of iterations. The
Mackey-Glass equatiofi4], horizontal line shows the exact value.
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FIG. 3. Similar to Fig. 1 but for systert9).

is rather difficult and most probably the length of the time
series had to be increased considerably. Even worse was t
situation for the estimates of the Lyapunov exponents. Us
ing, for example, the algorithm of Sano-Sawddd] it was
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FIG. 4. Similar to Fig. 2 but for systert9).

This leads to a stronger influence of curvature effects. One
geuld try to overcome this problem by using a global model
or long time series. But, such an approach is out of the scope
of this paper.

possible to estimate the exponents entering the Kaplan- Let us now address the question of the effect of the finite

Yorke formula, only. This is due to the fact that directions Sampling. As already mentioned, one loses information,
“orthogonal” to the attractor are not filled with data. There- since onlyr,/At dimensions of the originally infinite dimen-
fore, no information about the expansion rates in these direcsional space are accessible from the time series. We can only
tions is available, which means that it is impossible to esti-expect to get reasonable resultsAt is smaller than the
mate Lyapunov exponents corresponding to these directionfastest time scale. If, on the other hard, is too large, we
Or in other words, in linear space these directions would givavill change the apparent properties of the system and this
Lyapunov exponents that arex. But for curved manifolds should also be visible in the Lyapunov spectrum. Figure 5
the so-called spurious exponents appear, which can take asjiows the results of the calculation of the Lyapunov expo-
value. They can even be larger than the largest real one. nents obtained from syste(8) as a function of the “dimen-
The second example we want to show is an extension dional discretization’{coarse grainingin tangent space. One
the Mackey-Glass equation to a two-dimensional systensees that for taking into account more and more directions

[18]. It is given by the results converge. This discretization corresponds to a fi-
nite sampling time. This means that we can use the conver-
gence properties of the Lyapunov spectrum, as a function of
the sampling time\t, to check whether the results are reli-
able or not.

Figures 6 and 7 show the first ten Lyapunov exponents
estimated from time series of length 50 000 of the systems
(8) and(9), respectively. The different curves correspond to
different values of the sampling time. One clearly sees that
for sufficiently small values oAt the curves coincide, while
for too large Ats the results differ strongly from the

ays(t—ro)

e
Y )

+Ya(t),

} 9
Ya(t) = — 02y, (1) = pya(t),

with the parametera=3, w?’=2, p=1.5, andr,=5. The
observed variable ix; sampled withAt=1/8 and again
measuring a time series of length 50 000. Since (Bpde-

fines a two—dimensional system we now have to use a delay

embedding to reconstruct the manifold. [[t2] we showed

0.01

thatm=2 is sufficient for this system. d=46 ——
Figure 3 shows the first ten Lyapunov exponents for this o} d‘jgi T
system. Although in principle we could determine 40 expo- d=460 —=—
nents from the data, we estimated only the first ten to save 001 ¢
CPU time. Also here the agreement with the exact values is .0.02 -
very good. Note that since we now have to work on a four- <
dimensional manifold, we cannot expect that the local linear 0.03 ¢ =N
model is as good as in the single component sys®nirhis 004 "E“m:ﬂ\
is due to the fact that we need larger neighborhoods to finc ' "é”‘"‘i‘»:&m__
enough neighbors for the fit. This means that errors due tc -0.05 | T,
curvature effects are stronger.
Figure 4 shows, similarly to Fig. 2, the evolution of the -0.06 s T 15 20 o 30

Kaplan-Yorke dimension for systef8). Although the value
is not perfect the deviation from the exact value is still
smaller than 1%. The deviation is, as already mentioned, due FIG. 5. First 30 Lyapunov exponents of systésh for different
to the fact that we have to work in a four—dimensional spacevalues of the “dimensional discretization” of the tangent space.
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FIG. 6. First ten Lyapunov exponents of systénfor different FIG. 7. Similar to Fig. 6 but for systert9).
values ofAt.

with reasonable lengths of the time series, even in the case

) where the attractor’s dimension is very high. We demon-
asymptotic result. These results show that we can use th§ated the efficiency of this method by applying it to two

estimates of the spectrum to decide whether the given timg,merical systems. An extensive analysis of an experimental

series contains all the information we need to quantify thesystem using this method will be presented elsewh&gg
chaotic properties of the system.

On the basis of a recently developed method to model | am very much indebted to M. Buner, A. Giaquinta, H.
time-delayed feedback systems, we presented a technique k@antz, and A. Politi for very stimulating discussions and for
estimate the spectrum of Lyapunov exponents of such sysarefully reading the manuscript. Furthermore, | would like
tems. It turns out that the estimated spectrum gives reasome thank all of the members of the Istituto Nazionale di Ot-
ably good values of the exponents as long as the samplintica in Florence, Italy, where most of the work was done, for
time is sufficiently small to resolve all relevant time scales oftheir kind hospitality. This work was partially supported by a
the system. Since the embedding technique is independent gfant in the framework of the EC NetwoKonlinear Dy-
the dimension of the attractor we are able to work in quitenamics and Statistical Physics of Spatially Extended Systems
low-dimensional spaces, which allows for good estimatesinder Contract No. FMRX-CT96-0010.
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