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Estimating the Lyapunov spectrum of time delay feedback systems from scalar time series

Rainer Hegger
Max-Planck-Institut fu¨r Physik komplexer Systeme, No¨thnitzer Strasse 38, 01187 Dresden, Germany

~Received 15 June 1998; revised manuscript received 4 November 1998!

On the basis of a recently developed method for modeling time delay systems, we propose a procedure to
estimate the spectrum of Lyapunov exponents from a scalar time series. It turns out that the spectrum is
approximated very well and allows for good estimates of the Lyapunov dimension even if the sampling rate of
the time series is so low that the infinite dimensional tangent space is spanned quite sparsely.
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PACS number~s!: 05.45.2a, 05.45.Jn, 05.45.Tp
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Nonlinear time series analysis became a common
proach to the investigation of dynamical systems. On the
hand, this is due to the fact that the study of determinis
chaotic behavior became quite popular; on the other ha
the number and the reliability of available methods to e
plore this kind of systems did increase similarly rapidly~see,
e.g., @1,2# and references therein!. Collecting time series
$xn%n51

N consisting of measurements of a single physical
servable of the system, there are, at least for low-dimensi
systems, methods that allow for good estimates of the fra
dimensions~usually the correlation dimension@3#! and the
maximal Lyapunov exponent@4,5#. The reason why it is of-
ten sufficient to measure a scalar time series only is bec
of the theorems of Takens@6# and Saueret al. @7#. Takens
showed that, loosely speaking, one can reconstruct the u

served variables by building so-called delay vectorsxW i

5(xi , . . . ,xi 2m11). If the dimensionm of the delay vec-
tors fulfils m.2d, whered is the phase-space dimension
the system, then the space of the delay vectors is diffeom
phic to the original phase space. Saueret al. generalized this
theorem in the sense that they showed that ifm.2D f ,
whereD f is the fractal dimension of the attractor, the ne
space is an immersion of the original attractor. Since
dimension and the Lyapunov exponents are invariant un
diffeomorphisms, one can calculate these quantities in
delay space as well.

The restriction to low-dimensional systems is not due
theoretical, but to practical reasons. It was shown that
number of points needed for the analysis grows expon
tially with the attractor dimension@8#. This makes it difficult
or even impossible to handle high-dimensional objects. B
lot of interesting systems are rather high dimensional or e
infinite dimensional. One example is spatially extended s
tems given by partial differential equations. Their pha
space is indeed infinite dimensional and thus the attrac
can be arbitrarily high in dimension. Another class of sy
tems, and these are the ones we discuss in this paper, i
so-called time delay feedback systems@9#. In these systems
one or more of the coordinates are fed back to the sys
with some time delay. In principle, one could imagine rath
complicated mechanisms of the feedback, but we wan
restrict ourselves to the case in which we have only o
component fed back with one fixed delay timet0 . In this
case the equations of motion read
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yẆ ~ t !5 fW~yW ~ t !,yl~ t2t0!!, yWPRd. ~1!

Due to the feedback of thel th coordinate the phase space
the system is the direct product ofRd with the space of the
differentiable functions of the interval@2t0,0@ .

Although the phase space is infinite dimensional, the s
tem has a particular property if one uses the variab

@yẆ (t),yW (t),yl(t2t0)#. In this space Eqs.~1! define a set ofd
constraints that restrict the system to lie on
(d11)-dimensional manifoldM, which can be even
smaller in dimension than the attractor. This property w
used in@10,11# to determine the delay timet0 and the vector
field f for the cased51.

More general is the cased.1. Let $xn%n51
n be a time

series of lengthN and letxn be either the component of th
system, which was fed back or an invertible function of
Further, lett0 be a integer multiple of the time intervalsDt
of the measurementt05p0Dt. It is necessary to reconstruc
the unmeasured variables ofyW (t). Recently we proposed a
method @12# to reconstruct these variables on the abo
defined manifoldM. Since the system is nonautonomous~in
the sense that it is nonlocal in time!, we borrowed ideas of
Casdagli for input-output systems@13#. In this work Casdagli
treated systems of the form

xWn115 fW~xWn ,en!, ~2!

whereen is an arbitrary input. For such a system the Take
embedding cannot work if one only measures one varia
This is due to the fact that each measurement gives rise
new en and thus, a new source of ‘‘uncertainty.’’ He argue
that if, in addition to one variable, one also measures
inputs, a reconstruction in the sense of Takens’s works ag
but now with the tuples (xn ,en). In our case the input is the
delayed variablexn2p0Dt . So, in the spirit of Casdagli we

build vectors~without loss of generality we setDt51 and
thust05p0 for the rest of this paper!,

vW n~t0!5~yn ,yn21 , . . . ,yn2m11 ,yn2t0
, . . . ,yn2t02m11!,

~3!

wherem is the embedding dimension. In the sense of Tak
this m has generically to be at least 2d to give a diffeomor-
phic representation of the manifoldM.
1563 © 1999 The American Physical Society
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In the embedding space the dynamics of the system, o
other wordsM, is given through

xn115g„vW n~t0!…. ~4!

In principle the dynamics should also be given as a differ
tial equation as in the original space. But due to the finiten
of Dt and the resulting maplike structure of the time seri
we treat it as a map. This, of course, could cause problem
the reconstruction. SinceDt is finite, we are only able to
span a space of dimensiont0 and we lose all the dimension
from smaller time scales. The only way to decide whet
there was information lost, except when one has informa
about the typical time scales of the system, is to compare
results for differentDt and to see if the results converge. W
will come back to this point later on.

Usually we know neither the functiong nor the correct
delay timet0 . So we have to make an ansatz to estim
both. Let g̃aW be an ansatz~e.g., polynomials, radial basi
functions, or local linear models! of the functiong depending
linearly on a set of parametersaW . Using a likelihood estima-
tor for the optimal parametersaW we can getg̃. And since the
constraint~4! can only be fulfilled if we use the correct dela
time, we can use the fit of the function also as a schem
determinet0 ~for more details, see@12#!.

Since we are interested in calculating Lyapunov ex
nents and thus in the dynamics in tangent space, we ch
as an ansatz forg̃aW a local linear model

xn115a0,n1aW nvW n~t!, ~5!

where the parametersa0 and aW depend on the position in
space explicitly. Once we estimated the dynamics in the
constructed space, we can introduce the dynamics in its
gent space. Therefore, we introduce the vectorszWn through

zWn5~xn ,xn21 , . . . ,xn2t02m11!. ~6!

The meaning of the vectorszWn is twofold. They both contain
the delay reconstruction of the unobserved variable and
span the whole interval@2t0 :0#, which means the tangen
space of the system. Of course, this is not the full tang
space that was infinite dimensional, but a discretized vers
of it. Thus, with a sampling timeDt we can estimatet0 /Dt
Lyapunov exponents.

For zWn the Jacobians are simply given by

Ji j
n 5S ]zWn11

]zWn
D

i j

5F dxn11

dzj
, i 51

d i , j 11 , i .1 .

~7!

The first row of the Jacobian contains the fitted coefficie
aj at the positions of (vW n) j and zeros elsewhere. The oth
rows define a shift operation. To obtain the exponents
iterate a set of vectorseW i in tangent space according to th
dynamics given by theJn.

To demonstrate the strength of the method we presen
application to numerical models. The first one is t
Mackey-Glass equation@14#,
in
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ẏ5
ay~ t2t0!

11y~ t2t0!10
2by~ t !. ~8!

The parameters we chose area50.2, b50.1, andt0546.
Since this is a single component system, we do not need
embedding technique at all and we can work in the ‘‘phy
cal’’ space. We used a time series of length 50 000 samp
with a Dt of 1/2. This means we can estimate 92 expone
of the system. Figure 1 shows the estimate of these
Lyapunov exponents. The second curve, marked as exac
the exponents obtained by iterating the exact tangent sp
dynamics and using the scheme of Farmer@15#. The discreti-
zation of the tangent space was the same with this sche
One sees from the figure that the exponents agree ne
perfectly with the exact ones.

This is confirmed by Fig. 2 where we show the conve
gence of the Kaplan-Yorke@16# dimension as a function o
the number of iterations. Note that the fit for the dynamics
done in a two-dimensional space, while the Kaplan-Yor
dimension is about 5. This means, using usual delay emb
ding we needed at least an embedding dimension of 6
such a high-dimensional embedding space fitting a dynam

FIG. 1. Estimate of the first 92 Lyapunov exponents f
Mackey-Glass witht0546. The symbols show the result for th
iteration ofJn; the solid line the result for the iteration of the exa
tangent space dynamics with the same discretization of the tan
space.

FIG. 2. Estimate of the Kaplan-Yorke dimension for th
Mackey-Glass system as a function of the number of iterations.
horizontal line shows the exact value.



e
s
U

la
ns
e-
re
st
on
iv

a
.
n
te

el

hi
o
av
s
ur
ea

fin

e

til
d
c

ne
el
ope

ite
on,
-
only

this
5

po-

ons
a fi-
ver-
n of
li-

nts
ms
to
hat

.

PRE 60 1565ESTIMATING THE LYAPUNOV SPECTRUM OF TIME . . .
is rather difficult and most probably the length of the tim
series had to be increased considerably. Even worse wa
situation for the estimates of the Lyapunov exponents.
ing, for example, the algorithm of Sano-Sawada@17# it was
possible to estimate the exponents entering the Kap
Yorke formula, only. This is due to the fact that directio
‘‘orthogonal’’ to the attractor are not filled with data. Ther
fore, no information about the expansion rates in these di
tions is available, which means that it is impossible to e
mate Lyapunov exponents corresponding to these directi
Or in other words, in linear space these directions would g
Lyapunov exponents that are2`. But for curved manifolds
the so-called spurious exponents appear, which can take
value. They can even be larger than the largest real one

The second example we want to show is an extensio
the Mackey-Glass equation to a two-dimensional sys
@18#. It is given by

ẏ1~ t !5
ay1~ t2t0!

11y1
10~ t2t0!

1y2~ t !,

~9!
ẏ2~ t !52v2y1~ t !2ry2~ t !,

with the parametersa53, v252, r51.5, andt055. The
observed variable isx1 sampled withDt51/8 and again
measuring a time series of length 50 000. Since Eq.~9! de-
fines a two–dimensional system we now have to use a d
embedding to reconstruct the manifold. In@12# we showed
that m52 is sufficient for this system.

Figure 3 shows the first ten Lyapunov exponents for t
system. Although in principle we could determine 40 exp
nents from the data, we estimated only the first ten to s
CPU time. Also here the agreement with the exact value
very good. Note that since we now have to work on a fo
dimensional manifold, we cannot expect that the local lin
model is as good as in the single component system~8!. This
is due to the fact that we need larger neighborhoods to
enough neighbors for the fit. This means that errors due
curvature effects are stronger.

Figure 4 shows, similarly to Fig. 2, the evolution of th
Kaplan-Yorke dimension for system~9!. Although the value
is not perfect the deviation from the exact value is s
smaller than 1%. The deviation is, as already mentioned,
to the fact that we have to work in a four–dimensional spa

FIG. 3. Similar to Fig. 1 but for system~9!.
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This leads to a stronger influence of curvature effects. O
could try to overcome this problem by using a global mod
or long time series. But, such an approach is out of the sc
of this paper.

Let us now address the question of the effect of the fin
sampling. As already mentioned, one loses informati
since onlyt0 /Dt dimensions of the originally infinite dimen
sional space are accessible from the time series. We can
expect to get reasonable results ifDt is smaller than the
fastest time scale. If, on the other hand,Dt is too large, we
will change the apparent properties of the system and
should also be visible in the Lyapunov spectrum. Figure
shows the results of the calculation of the Lyapunov ex
nents obtained from system~8! as a function of the ‘‘dimen-
sional discretization’’~coarse graining! in tangent space. One
sees that for taking into account more and more directi
the results converge. This discretization corresponds to
nite sampling time. This means that we can use the con
gence properties of the Lyapunov spectrum, as a functio
the sampling timeDt, to check whether the results are re
able or not.

Figures 6 and 7 show the first ten Lyapunov expone
estimated from time series of length 50 000 of the syste
~8! and ~9!, respectively. The different curves correspond
different values of the sampling time. One clearly sees t
for sufficiently small values ofDt the curves coincide, while
for too large Dts the results differ strongly from the

FIG. 4. Similar to Fig. 2 but for system~9!.

FIG. 5. First 30 Lyapunov exponents of system~8! for different
values of the ‘‘dimensional discretization’’ of the tangent space
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asymptotic result. These results show that we can use
estimates of the spectrum to decide whether the given t
series contains all the information we need to quantify
chaotic properties of the system.

On the basis of a recently developed method to mo
time-delayed feedback systems, we presented a techniq
estimate the spectrum of Lyapunov exponents of such
tems. It turns out that the estimated spectrum gives rea
ably good values of the exponents as long as the samp
time is sufficiently small to resolve all relevant time scales
the system. Since the embedding technique is independe
the dimension of the attractor we are able to work in qu
low-dimensional spaces, which allows for good estima

FIG. 6. First ten Lyapunov exponents of system~8! for different
values ofDt.
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with reasonable lengths of the time series, even in the c
where the attractor’s dimension is very high. We demo
strated the efficiency of this method by applying it to tw
numerical systems. An extensive analysis of an experime
system using this method will be presented elsewhere@19#.
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FIG. 7. Similar to Fig. 6 but for system~9!.
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